‘Fit for Purpose’ Urban Heat Island Effect Study Methodology for Indian Cities

Rajan Rawal

CEPT University, Ahmedabad, India

Yash Shukla

CEPT University, Ahmedabad, India

Subham Das

CEPT University, Ahmedabad, India
Corresponding Author: subham.das@cept.ac.in

Tej Chavda

CEPT University, Ahmedabad, India

Rahul Agnihotri

Cool Coalition at UN Environment Programme, Paris, France

Lily Riahi

Cool Coalition at UN Environment Programme, Paris, France

Benjamin Hickman

Cool Coalition at UN Environment Programme, Paris, France

Parimita Mohanty

Cool Coalition at UN Environment Programme, Paris, France

Cite this article

Rawal, R., Shukla, Y., Das, S., Chavda, T., Agnihotri, R., Riahi, L., Hickman, B., Mohanty, P. (2024). ‘Fit for Purpose’ Urban Heat Island Effect Study Methodology for Indian Cities. In Proceedings of Energise 2023- Lifestyle, Energy Efficiency, and Climate Action, pp 206–216, Alliance for an Energy Efficient Economy. https://doi.org/10.62576/MVJK2533

Highlights

  • A systematic review of the Urban Heat Island Effect (UHIE) assessment literature and practices.
  • Derivations and defining the Level of Detail (LoD) classification.
  • Identifying the purposes of the UHIE study and categorizing the LoD for a ‘Fit for Purpose’.
  • Developing a commonly agreed methodology for Indian Cities.

Abstract

The paper recognizes that the Urban Heat Island Effect (UHIE) occurs primarily due to urbanization impacting land surface characteristics, where the blue-green cover is replaced with complex-built fabric and increased anthropogenic heat emissions within urban areas. Without a common agreed-upon methodology with specific objectives that cities wish to accomplish, Indian cities are adopting varied methods to assess UHIE that do not help them attain the predefined objectives and are often found to be less scientific. This paper proposes a standardized methodology and underpins its argument on two frameworks, ‘Fit for the Purpose’ and ‘Level of Details,’ making it easier to adopt. Such efforts are expected to help cities account for the UHIE assessment with specific objectives that cities can optimize with available data and human and economic resources. The paper relies on a systematic literature review and considers the ground realities to develop the methodology. The proposed framework could be one of a kind to be adopted in India, helping cities evaluate their context and navigate them to solutions. It also aims to balance the suitable trade-off between data fidelity and decision-making efficiency, tailored to specific needs and constraints.

Keywords

Urban Heat Island Effect, Level of Details, Fit for Purpose, Heat Action Plan, Outdoor Thermal Comfort.

References

  1. P. Ellis and Mark Roberts, Managing spatial transformation for prosperity and livability. 2016. https://doi.org/10.1596/978-1-4648-0662-9
  2. H. Howe, World Economic Outlook. 2017.
  3. S. Dwivedi et al., “India’s climate research agenda : 2030 and beyond Events,” 2023.
  4. A. Srivastava, M. Mohapatra, and N. Kumar, “Hot weather hazard analysis over India,” Sci. Rep., pp. 1-15, 2022, doi: 10.1038/s41598-022-24065-0. https://doi.org/10.1038/s41598-022-24065-0
  5. Priyadarsini Rajagopalan, “Urban heat island and mitigation in tropical India,” 2021, pp. 183-203. https://doi.org/10.1007/978-981-33-4050-3_9
  6. Ahmedabad Municipal Corporation, “Heat action plan guide to extreme heat planning in Ahmedabad, India,” 2018.
  7. NRDC, “Expanding heat resilience across India : Heat action plan,” 2022.
  8. NDMA, “National guidelines for preparation of action plan – Prevention and management of heat wave.” 2019.
  9. IMD, “Heat wave warning services.” 2021.
  10. IMD, “Current temperature status and heat wave warning,” no. Annexure 1, 2023.
  11. M. Goswami, “What’s the weather going to ‘Feel Like’? IMD heat index will tell you just that,” 2023. [Online]. Available: https://www.thequint.com/explainers/imd-real-feel-factor-weather-forecasts-heat-index-heatwaves#read-more.
  12. NIUA and MOHUA, “An advisory on preparation of heat maps for cities.”
  13. MOHUA and URDPFI, “URDPFI Guidelines – 2016,” 2016. [Online]. Available: http://mohua.gov.in/link/urdpfi-guidelines.php.
  14. P. A. Mirzaei and F. Haghighat, “Approaches to study Urban Heat Island – Abilities and limitations,” Build. Environ., vol. 45, no. 10, pp. 2192-2201, 2010. https://doi.org/10.1016/j.buildenv.2010.04.001
  15. H. Huo et al., “Simulation of the urban space thermal environment based on computational fluid dynamics: A comprehensive review,” Sensors, vol. 21, no. 20, pp. 1-27, 2021. https://doi.org/10.3390/s21206898
  16. S. W. Kim and R. D. Brown, “Urban heat island (UHI) intensity and magnitude estimations: A systematic literature review,” Sci. Total Environ., vol. 779, p. 146389, 2021. https://doi.org/10.1016/j.scitotenv.2021.146389
  17. Prof Rajan Rawal, Urban Building Energy Modelling – Developing a model for Ahmedabad with Prof Rajan Rawal. 2023.
  18. E. H. Salal Rajan and L. R. Amirtham, “Impact of building regulations on the perceived outdoor thermal comfort in the mixed use neighbourhood of Chennai,” Front. Archit. Res., vol. 10, no. 1, pp. 148-163, 2021. https://doi.org/10.1016/j.foar.2020.09.002
  19. R. Kotharkar and A. Bagade, “Local Climate Zone classification for Indian cities: A case study of Nagpur,” Urban Clim., vol. 24, pp. 369-392, 2018. https://doi.org/10.1016/j.uclim.2017.03.003
  20. Q. Meng, L. Zhang, Z. Sun, F. Meng, L. Wang, and Y. Sun, “Characterizing spatial and temporal trends of surface urban heat island effect in an urban main built-up area: A 12-year case study in Beijing, China,” Remote Sens. Environ., vol. 204, no. November 2016, pp. 826-837, 2018. https://doi.org/10.1016/j.rse.2017.09.019
  21. L. Yao, T. Li, M. Xu, and Y. Xu, “How the landscape features of urban green space impact seasonal land surface temperatures at a city-block-scale: An urban heat island study in Beijing, China,” Urban For. Urban Green., vol. 52, no. March, p. 126704, 2020. https://doi.org/10.1016/j.ufug.2020.126704
  22. H. Liu, Q. Zhan, C. Yang, and J. Wang, “Characterizing the spatio-temporal pattern of land surface temperature through time series clustering: Based on the latent pattern and morphology,” Remote Sens., vol. 10, no. 4, 2018. https://doi.org/10.3390/rs10040654
  23. A. K. Nassar, G. A. Blackburn, and J. D. Whyatt, “Dynamics and controls of urban heat sink and island phenomena in a desert city: Development of a local climate zone scheme using remotely-sensed inputs,” Int. J. Appl. Earth Obs. Geoinf., vol. 51, pp. 76-90, 2016. https://doi.org/10.1016/j.jag.2016.05.004
  24. J. Song, S. Du, X. Feng, and L. Guo, “The relationships between landscape compositions and land surface temperature: Quantifying their resolution sensitivity with spatial regression models,” Landsc. Urban Plan., vol. 123, pp. 145-157, 2014. https://doi.org/10.1016/j.landurbplan.2013.11.014
  25. A. Mathew, S. Khandelwal, and N. Kaul, “Investigating spatial and seasonal variations of urban heat island effect over Jaipur city and its relationship with vegetation, urbanization and elevation parameters,” Sustain. Cities Soc., vol. 35, pp. 157-177, 2017. https://doi.org/10.1016/j.scs.2017.07.013
  26. W. Y. Shih, S. Ahmad, Y. C. Chen, T. P. Lin, and L. Mabon, “Spatial relationship between land development pattern and intra-urban thermal variations in Taipei,” Sustain. Cities Soc., vol. 62, p. 102415, 2020. https://doi.org/10.1016/j.scs.2020.102415
  27. Z. Wang, M. Liu, X. Liu, Y. Meng, L. Zhu, and Y. Rong, “Spatio-temporal evolution of surface urban heat islands in the Chang-Zhu-Tan urban agglomeration,” Phys. Chem. Earth, vol. 117, no. March, p. 102865, 2020. https://doi.org/10.1016/j.pce.2020.102865
  28. R. Kesavan, M. Muthian, K. Sudalaimuthu, S. Sundarsingh, and S. Krishnan, “ARIMA modeling for forecasting land surface temperature and determination of urban heat island using remote sensing techniques for Chennai city, India,” Arab. J. Geosci., vol. 14, no. 11, 2021. https://doi.org/10.1007/s12517-021-07351-5
  29. K. Dutta, D. Basu, and S. Agrawal, “Synergetic interaction between spatial land cover dynamics and expanding urban heat islands,” Environ. Monit. Assess., vol. 193, no. 4, pp. 1-22, 2021. https://doi.org/10.1007/s10661-021-08969-4
  30. N. Kikon, P. Singh, S. K. Singh, and A. Vyas, “Assessment of urban heat islands (UHI) of Noida City, India using multitemporal satellite data,” Sustain. Cities Soc., vol. 22, pp. 19-28, 2016. https://doi.org/10.1016/j.scs.2016.01.005
  31. J. Quan, Y. Chen, W. Zhan, J. Wang, J. Voogt, and M. Wang, “Multi-temporal trajectory of the urban heat island centroid in Beijing, China based on a Gaussian volume model,” Remote Sens. Environ., vol. 149, pp. 33-46, 2014. https://doi.org/10.1016/j.rse.2014.03.037
  32. B. Budhiraja, G. Agrawal, and P. Pathak, “Urban heat island effect of a polynuclear megacity Delhi – Compactness and thermal evaluation of four sub-cities,” Urban Clim., vol. 32, no. March, p. 100634, 2020. https://doi.org/10.1016/j.uclim.2020.100634
  33. S. Zheng, J. Guldmann, Z. Liu, and L. Zhao, “Influence of trees on the outdoor thermal environment in subtropical areas: An experimental study in Guang Zhou, China,” Sustain. Cities Soc., 2018. https://doi.org/10.1016/j.scs.2018.07.025
  34. M. Salinitro, A. Alessandrini, A. Zappi, and A. Tassoni, “Impact of climate change and urban development on the flora of a southern European city : analysis of biodiversity change over a 120-year period,” no. June, pp. 1-10, 2019. https://doi.org/10.1038/s41598-019-46005-1
  35. A. C. Petri, B. Wilson, and A. Koeser, “Land Use Policy Planning the urban forest : Adding microclimate simulation to the planner’s toolkit,” Land use policy, vol. 88, no. July, p. 104117, 2019. https://doi.org/10.1016/j.landusepol.2019.104117
  36. L. R. Amirtham, “Urbanization and its impact on urban heat island intensity in Chennai Metropolitan Area, India,” Indian J. Sci. Technol., vol. 9, no. 5, 2016. https://doi.org/10.17485/ijst/2016/v9i5/87201
  37. A. Chatzidimitriou and S. Yannas, “Microclimate development in open urban spaces: The influence of form and materials,” Energy Build., vol. 108, pp. 156-174, 2015. https://doi.org/10.1016/j.enbuild.2015.08.048
  38. F. Cotana et al., “Albedo control as an effective strategy to tackle Global Warming: A case study,” Appl. Energy, vol. 130, pp. 641-647, 2014. https://doi.org/10.1016/j.apenergy.2014.02.065
  39. R. Kotharkar, A. Bagade, and P. R. Singh, “A systematic approach for urban heat island mitigation strategies in critical local climate zones of an Indian city,” Urban Clim., vol. 34, no. February, p. 100701, 2020. https://doi.org/10.1016/j.uclim.2020.100701
  40. L. Carlosena, Á. Ruiz-Pardo, J. Feng, O. Irulegi, R. J. Hernández-Minguillón, and M. Santamouris, “On the energy potential of daytime radiative cooling for urban heat island mitigation,” Sol. Energy, vol. 208, no. July, pp. 430-444, 2020. https://doi.org/10.1016/j.solener.2020.08.015
  41. D. Kannamma and D. A. M. Sundaram, “Significance of microclimatic study in urban canyons towards ambient urban space design,” J. Today’S Ideas – Tomorrow’S Technol., vol. 3, no. 1, pp. 95-109, 2015. https://doi.org/10.15415/jotitt.2015.31007
  42. M. Mohan, A. P. Sati, and S. Bhati, “Urban sprawl during five decadal periods over National Capital Region of India: Impact on urban heat island and thermal comfort,” Urban Clim., vol. 33, no. October 2019, p. 100647, 2020. https://doi.org/10.1016/j.uclim.2020.100647
  43. H. Farhadi, M. Faizi, and H. Sanaieian, “Mitigating the urban heat island in a residential area in Tehran: Investigating the role of vegetation, materials, and orientation of buildings,” Sustain. Cities Soc., vol. 46, p. 101448, 2019. https://doi.org/10.1016/j.scs.2019.101448
  44. B. J. He, L. Ding, and D. Prasad, “Relationships among local-scale urban morphology, urban ventilation, urban heat island and outdoor thermal comfort under sea breeze influence,” Sustain. Cities Soc., vol. 60, p. 102289, 2020. https://doi.org/10.1016/j.scs.2020.102289
  45. C. Yan, Q. Guo, H. Li, L. Li, and G. Y. Qiu, “Quantifying the cooling effect of urban vegetation by mobile traverse method: A local-scale urban heat island study in a subtropical megacity,” Build. Environ., p. 106541, 2019. https://doi.org/10.1016/j.buildenv.2019.106541
  46. M. Roth, “Urban Heat Islands,” 2013.
  47. M. Roth and W. T. L. Chow, “A historical review and assessment of urban heat island research in Singapore,” vol. 33, pp. 381-397, 2012. https://doi.org/10.1111/sjtg.12003
  48. X. Huang and Y. Wang, “Investigating the effects of 3D urban morphology on the surface urban heat island effect in urban functional zones using high-resolution remote sensing data: A case study of Wuhan, Central China,” ISPRS J. Photogramm. Remote Sens., vol. 152, no. April, pp. 119-131, 2019. https://doi.org/10.1016/j.isprsjprs.2019.04.010
  49. M. Karimimoshaver, R. Khalvandi, and M. Khalvandi, “The effect of urban morphology on heat accumulation in urban street canyons and mitigation approach,” Sustain. Cities Soc., vol. 73, no. March, p. 103127, 2021. https://doi.org/10.1016/j.scs.2021.103127
  50. W. Liao, T. Hong, and Y. Heo, “Energy & Buildings The effect of spatial heterogeneity in urban morphology on surface urban heat islands,” Energy Build., vol. 244, p. 111027, 2021. https://doi.org/10.1016/j.enbuild.2021.111027
  51. J. Litardo et al., “Urban Heat Island intensity and buildings’ energy needs in Duran, Ecuador: Simulation studies and proposal of mitigation strategies,” Sustain. Cities Soc., vol. 62, no. July, p. 102387, 2020. https://doi.org/10.1016/j.scs.2020.102387
  52. K. Gunawardena, T. Kershaw, and K. Steemers, “Simulation pathway for estimating heat island influence on urban/suburban building space-conditioning loads and response to facade material changes,” Build. Environ., vol. 150, pp. 195-205, 2019. https://doi.org/10.1016/j.buildenv.2019.01.006
  53. J. Parker, “The Leeds urban heat island and its implications for energy use and thermal comfort,” Energy Build., p. 110636, 2020. https://doi.org/10.1016/j.enbuild.2020.110636
  54. S. Duan, Z. Luo, X. Yang, and Y. Li, “The impact of building operations on urban heat / cool islands under urban densification : A comparison between naturally-ventilated and air-conditioned buildings,” Appl. Energy, vol. 235, no. July 2018, pp. 129-138, 2019. https://doi.org/10.1016/j.apenergy.2018.10.108
  55. R. Kumar, V. Mishra, J. Buzan, R. Kumar, D. Shindell, and M. Huber, “Dominant control of agriculture and irrigation on urban heat island in India,” Sci. Rep., vol. 7, no. 1, pp. 1-10, 2017. https://doi.org/10.1038/s41598-017-14213-2
  56. P. P. Wong, P. Lai, C. Low, S. Chen, and M. Hart, “The impact of environmental and human factors on urban heat and microclimate variability,” Build. Environ., vol. 95, pp. 199-208, 2016. https://doi.org/10.1016/j.buildenv.2015.09.024
  57. H. Yan, V. A. Vorontsov, and D. Dye, “Intermetallics Alloying effects in polycrystalline g strengthened Co e Al e W base alloys,” vol. 48, pp. 44-53, 2014. https://doi.org/10.1016/j.intermet.2013.10.022
  58. H. Jin, P. Cui, N. H. Wong, and M. Ignatius, “Assessing the effects of urban morphology parameters on microclimate in Singapore to control the urban heat island effect,” Sustain., vol. 10, no. 1, 2018. https://doi.org/10.3390/su10010206
  59. E. Jamei, P. Rajagopalan, M. Seyedmahmoudian, and Y. Jamei, “Review on the impact of urban geometry and pedestrian level greening on outdoor thermal comfort,” Renew. Sustain. Energy Rev., vol. 54, pp. 1002-1017, 2016. https://doi.org/10.1016/j.rser.2015.10.104
  60. L. Huang, J. Li, D. Zhao, and J. Zhu, “A fieldwork study on the diurnal changes of urban microclimate in four types of ground cover and urban heat island of Nanjing, China,” Build. Environ., vol. 43, no. 1, pp. 7-17, 2008. https://doi.org/10.1016/j.buildenv.2006.11.025
  61. B. Chun and J. M. Guldmann, “Impact of greening on the urban heat island: Seasonal variations and mitigation strategies,” Comput. Environ. Urban Syst., vol. 71, no. September 2017, pp. 165-176, 2018. https://doi.org/10.1016/j.compenvurbsys.2018.05.006
  62. F. Yang and L. Chen, “Developing a thermal atlas for climate-responsive urban design based on empirical modeling and urban morphological analysis,” Energy Build., vol. 111, pp. 120-130, 2016. https://doi.org/10.1016/j.enbuild.2015.11.047
  63. Y. Shi, K. K. L. Lau, C. Ren, and E. Ng, “Evaluating the local climate zone classification in high density heterogeneous urban environment using mobile measurement,” Urban Clim., vol. 25, no. July, pp. 167-186, 2018. https://doi.org/10.1016/j.uclim.2018.07.001
  64. T. Holderness, S. Barr, R. Dawson, and J. Hall, “An evaluation of thermal Earth observation for characterizing urban heatwave event dynamics using the urban heat island intensity metric,” Int. J. Remote Sens., vol. 34, no. 3, pp. 864-884, 2013. https://doi.org/10.1080/01431161.2012.714505
  65. L. Liu et al., “An integrated local climatic evaluation system for green sustainable eco-city construction: A case study in Shenzhen, China,” Build. Environ., vol. 114, pp. 82-95, 2017. https://doi.org/10.1016/j.buildenv.2016.12.018
  66. G. S. N. V. K. S. N. Swamy, S. M. Nagendra, and U. Schlink, “Impact of urban heat island on meteorology and air quality at microenvironments,” J. Air Waste Manag. Assoc., vol. 0, no. 0, pp. 876-891, 2020. https://doi.org/10.1080/10962247.2020.1783390
  67. M. Mohan et al., “Industrial heat island: a case study of Angul-Talcher region in India,” Theor. Appl. Climatol., vol. 141, no. 1-2, pp. 229-246, 2020. https://doi.org/10.1007/s00704-020-03181-9
  68. R. Kotharkar, A. Bagade, and A. Ramesh, “Assessing urban drivers of canopy layer urban heat island: A numerical modeling approach,” Landsc. Urban Plan., vol. 190, no. May, p. 103586, 2019. https://doi.org/10.1016/j.landurbplan.2019.05.017
  69. A. Jeganathan, R. Andimuthu, R. Prasannavenkatesh, and D. S. Kumar, “Spatial variation of temperature and indicative of the urban heat island in Chennai Metropolitan Area, India,” Theor. Appl. Climatol., vol. 123, no. 1-2, pp. 83-95, 2016. https://doi.org/10.1007/s00704-014-1331-8
  70. N. Yadav, C. Sharma, S. K. Peshin, and R. Masiwal, “Study of intra-city urban heat island intensity and its influence on atmospheric chemistry and energy consumption in Delhi,” Sustain. Cities Soc., vol. 32, no. April, pp. 202-211, 2017. https://doi.org/10.1016/j.scs.2017.04.003
  71. S. Bhati and M. Mohan, “WRF-urban canopy model evaluation for the assessment of heat island and thermal comfort over an urban airshed in India under varying land use/land cover conditions,” Geosci. Lett., vol. 5, no. 1, 2018. https://doi.org/10.1186/s40562-018-0126-7
  72. S. Bhati and M. Mohan, “WRF model evaluation for the urban heat island assessment under varying land use/land cover and reference site conditions,” 2015. https://doi.org/10.1007/s00704-015-1589-5
  73. S. Kedia, S. P. Bhakare, A. K. Dwivedi, S. Islam, and A. Kaginalkar, “Estimates of change in surface meteorology and urban heat island over northwest India: Impact of urbanization,” Urban Clim., vol. 36, no. January, p. 100782, 2021. https://doi.org/10.1016/j.uclim.2021.100782
  74. A. Cortes, A. Jesfel, J. Ace, and A. Blanco, “Evaluating mitigation strategies for urban heat island in Mandaue City using ENVI-met,” J. Urban Manag., vol. 11, no. 1, pp. 97-106, 2022. https://doi.org/10.1016/j.jum.2022.01.002
  75. R. N. Faragallah and R. A. Ragheb, “Evaluation of thermal comfort and urban heat island through cool paving materials using ENVI-Met,” Ain Shams Eng. J., vol. 13, no. 3, p. 101609, 2022. https://doi.org/10.1016/j.asej.2021.10.004
  76. A. Albatayneh, D. Alterman, and A. Page, “Adaptation the use of CFD modelling for building thermal simulation,” ACM Int. Conf. Proceeding Ser., pp. 68-72, 2018. https://doi.org/10.1145/3178461.3178466
  77. R. Padmanaban, A. K. Bhowmik, and P. Cabral, “Satellite image fusion to detect changing surface permeability and emerging urban heat islands in a fast-growing city,” PLoS One, vol. 14, no. 1, pp. 1-20, 2019. https://doi.org/10.1371/journal.pone.0208949
  78. T. van Hooff, B. Blocken, and Y. Tominaga, “On the accuracy of CFD simulations of cross-ventilation flow for a generic isolated building: Comparison of RANS, LES, and experiments,” Build. Environ., vol. 114, pp. 148-165, 2017. https://doi.org/10.1016/j.buildenv.2016.12.019
  79. N. Antoniou, H. Montazeri, M. Neophytou, and B. Blocken, “CFD simulation of urban microclimate: Validation using highresolution field measurements,” Sci. Total Environ., vol. 695, p. 133743, 2019. https://doi.org/10.1016/j.scitotenv.2019.133743
  80. S. Murakami, S. Kato, and T. Kim, “Indoor climate design based on CFD Coupled simulation of convection, radiation, and HVAC control for attaining a given PMV value,” Build. Environ., vol. 36, no. 6, pp. 701-709, 2001. https://doi.org/10.1016/S0360-1323(00)00069-X
  81. P. Piroozmand, G. Mussetti, J. Allegrini, M. H. Mohammadi, E. Akrami, and J. Carmeliet, “Coupled CFD framework with mesoscale urban climate model: Application to microscale urban flows with weak synoptic forcing,” J. Wind Eng. Ind. Aerodyn., vol. 197, no. August 2019, p. 104059, 2020. https://doi.org/10.1016/j.jweia.2019.104059
  82. S. Saneinejad, P. Moonen, T. Defraeye, D. Derome, and J. Carmeliet, “Coupled CFD, radiation and porous media transport model for evaluating evaporative cooling in an urban environment,” J. Wind Eng. Ind. Aerodyn., vol. 104-106, pp. 455-463, 2012. https://doi.org/10.1016/j.jweia.2012.02.006
  83. Q. Wang, C. Zhang, C. Ren, J. Hang, and Y. Li, “Urban heat island circulations over the Beijing-Tianjin region under calm and fair conditions,” Build. Environ., vol. 180, p. 107063, 2020. https://doi.org/10.1016/j.buildenv.2020.107063
  84. J. Bernard, M. Musy, I. Calmet, E. Bocher, and P. Keravec, “Urban heat island temporal and spatial variations: Empirical modeling from geographical and meteorological data,” Build. Environ., vol. 125, pp. 423-438, 2017. https://doi.org/10.1016/j.buildenv.2017.08.009
  85. C. Ketterer and A. Matzarakis, “Comparison of different methods for the assessment of the urban heat island in Stuttgart, Germany,” Int. J. Biometeorol., vol. 59, no. 9, pp. 1299-1309, 2015. https://doi.org/10.1007/s00484-014-0940-3
  86. B. G. Heusinkveld, G. J. Steeneveld, L. W. A. van Hove, C. M. J. Jacobs, and A. A. M. Holtslag, “Spatial variability of the Rotterdam urban heat island as influenced by urban land use,” J. Geophys. Res., vol. 119, pp. 2966-2989, 2014. https://doi.org/10.1002/2012JD019399
  87. C. Beck et al., “Air temperature characteristics of local climate zones in the Augsburg urban area (Bavaria, southern Germany) under varying synoptic conditions,” Urban Clim., vol. 25, no. April, pp. 152-166, 2018. https://doi.org/10.1016/j.uclim.2018.04.007
  88. M. K. Firozjaei, M. Kiavarz, S. K. Alavipanah, T. Lakes, and S. Qureshi, “Monitoring and forecasting heat island intensity through multi-temporal image analysis and cellular automata-Markov chain modelling: A case of Babol city, Iran,” Ecol. Indic., vol. 91, no. July 2017, pp. 155-170, 2018. https://doi.org/10.1016/j.ecolind.2018.03.052
  89. N. Schwarz, S. Lautenbach, and R. Seppelt, “Exploring indicators for quantifying surface urban heat islands of European cities with MODIS land surface temperatures,” Remote Sens. Environ., vol. 115, no. 12, pp. 3175-3186, 2011. https://doi.org/10.1016/j.rse.2011.07.003
  90. C. Yin, M. Yuan, Y. Lu, Y. Huang, and Y. Liu, “Effects of urban form on the urban heat island effect based on the spatial regression model,” Sci. Total Environ., vol. 634, pp. 696-704, 2018. https://doi.org/10.1016/j.scitotenv.2018.03.350
  91. Q. Weng, D. Lu, and J. Schubring, “Estimation of land surface temperature-vegetation abundance relationship for urban heat island studies,” Remote Sens. Environ., vol. 89, no. 4, pp. 467-483, 2004. https://doi.org/10.1016/j.rse.2003.11.005
  92. H. C. Ho, A. Knudby, P. Sirovyak, Y. Xu, M. Hodul, and S. B. Henderson, “Mapping maximum urban air temperature on hot summer days,” Remote Sens. Environ., vol. 154, pp. 38-45, 2014. https://doi.org/10.1016/j.rse.2014.08.012
  93. C. Berger, J. Rosentreter, M. Voltersen, C. Baumgart, C. Schmullius, and S. Hese, “Spatio-temporal analysis of the relationship between 2D/3D urban site characteristics and land surface temperature,” Remote Sens. Environ., vol. 193, pp. 225-243, 2017. https://doi.org/10.1016/j.rse.2017.02.020
  94. Y. Hu, Z. Dai, and J. Guldmann, “Modeling the impact of 2D / 3D urban indicators on the urban heat island over different seasons : A boosted regression tree approach,” J. Environ. Manage., vol. 266, no. 11, p. 110424, 2020. https://doi.org/10.1016/j.jenvman.2020.110424
  95. M. M. Baby and G. Arya, “A Study of Urban Heat Island and Its Mapping,” International J. Sci. Eng. Res., vol. 4, no. 3, pp. 45-47, 2016.
  96. M. Mohan, Y. Kikegawa, B. R. Gurjar, S. Bhati, and N. R. Kolli, “Assessment of urban heat island effect for different land use-land cover from micrometeorological measurements and remote sensing data for megacity Delhi,” Theor. Appl. Climatol., vol. 112, no. 3-4, pp. 647-658, 2013. https://doi.org/10.1007/s00704-012-0758-z
  97. R. Neog et al., “An infrared thermography-based study on the variation in diurnal and seasonal land surface temperature at Dibrugarh city, India,” model. Earth Syst. Environ., vol. 6, no. 4, pp. 2047-2061, 2020. https://doi.org/10.1007/s40808-020-00772-3
  98. M. Musy and A. Bernabe, “Radiative properties of the urban fabric derived from surface form analysis : A simplified solar balance model,” vol. 122, pp. 156-168, 2015. https://doi.org/10.1016/j.solener.2015.08.031